
OpenIMAJ and ImageTerrier: Java Libraries and Tools for
Scalable Multimedia Analysis and Indexing of Images

Jonathon S. Hare
jsh2@ecs.soton.ac.uk

Sina Samangooei
ss@ecs.soton.ac.uk

David P. Dupplaw
dpd@ecs.soton.ac.uk

Electronics and Computer Science, University of Southampton
Southampton, United Kingdom

ABSTRACT
OpenIMAJ and ImageTerrier are recently released open-
source libraries and tools for experimentation and devel-
opment of multimedia applications using Java-compatible
programming languages. OpenIMAJ (the Open toolkit for
Intelligent Multimedia Analysis in Java) is a collection of
libraries for multimedia analysis. The image libraries con-
tain methods for processing images and extracting state-
of-the-art features, including SIFT. The video and audio
libraries support both cross-platform capture and process-
ing. The clustering and nearest-neighbour libraries contain
efficient, multi-threaded implementations of clustering al-
gorithms. The clustering library makes it possible to easily
create BoVW representations for images and videos. OpenI-
MAJ also incorporates a number of tools to enable extremely-
large-scale multimedia analysis using distributed computing
with Apache Hadoop.

ImageTerrier is a scalable, high-performance search engine
platform for content-based image retrieval applications using
features extracted with the OpenIMAJ library and tools.
The ImageTerrier platform provides a comprehensive test-
bed for experimenting with image retrieval techniques. The
platform incorporates a state-of-the-art implementation of
the single-pass indexing technique for constructing inverted
indexes and is capable of producing highly compressed index
data structures.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software; I.4.0
[Image Processing and Computer Vision]: General;
I.5.0 [Pattern Recognition]: General; H.3.3 [Information
Storage and Retrieval]: Information Search and Retrieval;
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing

General Terms
Algorithms, Design, Experimentation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MM’11, November 28–December 1, 2011, Scottsdale, Arizona, USA.
Copyright 2011 ACM 978-1-4503-0616-4/11/11 ...$10.00.

1. INTRODUCTION
OpenIMAJ and ImageTerrier are recently released, twinned

open-source projects that contain software libraries and tools
for experimenting with and developing multimedia analysis,
classification and retrieval software. Whilst the codebase
has only recently been publicly released, it is quite mature,
having been under active development since around 2005
internally in the University of Southampton.

The OpenIMAJ project contains a number of tools and
libraries for everything from state-of-the-art computer vi-
sion (i.e. SIFT descriptors [1] and salient region detec-
tion, face detection, etc.) and advanced data clustering,
through to software that performs analysis on the layout
and structure of web-pages. The ImageTerrier project imple-
ments a highly-scalable architecture for building and search-
ing inverted-indexes of ‘visual terms’ extracted from images.

The majority1 of the OpenIMAJ codebase has been re-
leased under the New BSD license which makes it freely
available to both academic and commercial users. The Im-
ageTerrier project is released under the same licensing terms
as the Terrier project on which it is built — namely the
Mozilla Public License. This license also allows both aca-
demic and commercial use of the code.

2. DESIGN AND PERFORMANCE
OpenIMAJ and ImageTerrier are primarily written in pure

Java and, as such are completely platform independent. The
video-capture and hardware libraries contain some native
code but Linux, OSX and Windows are supported out of
the box (under both 32 and 64 bit JVMs). It is possible to
write programs that use the libraries in any JVM language
that supports Java interoperability, for example Groovy23.
OpenIMAJ can even be run on Android phones and tablets4.

One of the main goals in the design and implementation
of the two projects was to keep all components as modu-
lar as possible. For example, the OpenIMAJ difference-of-
Gaussian SIFT implementation allows different parts of the
algorithm to be replaced or modified at will. Implementa-
tions of commonly used algorithms are also made as generic
as possible; for example, the OpenIMAJ RANSAC imple-
mentation works with generic Model objects and doesn’t care

1Two non-core sub-projects have slightly different licensing
conditions as they were originally derived from other open-
source code, however all the licenses are business-friendly.
2Groovy: http://groovy.codehaus.org
3Groovy and OpenIMAJ: http://bit.ly/OIMJGROOVY
4Android and OpenIMAJ: http://bit.ly/OIMJAND

Jonathon Hare

Jonathon Hare

Jonathon Hare

Jonathon Hare

openimaj
core Submodule for modules containing functionality used across the library.
core Core library functionality concerned with general programming problems rather than multimedia

specific functionality. Includes I/O utilities, randomisation, hashing and type conversion.
feature Core notion of features, usually denoted as arrays of data. Definitions of features for all primitive

types, features with location and lists of features (both in memory and on disk).
audio Core definitions of audio streams and samples/chunks. Also contains interfaces for processors

for these basic types.
image Core definitions of images, pixels and connected components. Also contains interfaces for pro-

cessors for these basic types.
video Core definitions of a video type, and functionality for displaying videos.
video-capture Cross-platform video capture interface using a lightweight native interface. Supports 32 and 64

bit JVMs under Linux, OSX and Windows.
math Mathematical implementations including geometric, matrix and statistical operators.

audio Submodule for audio related functionality.
processing Implementations of various audio processors (e.g. multichannel conversion, volume change, ...).

image Submodule for image related functionality.
processing Implementations of various image, pixel and connected component processors (resizing, convo-

lution, edge detection, ...).
feature-extraction Methods for the extraction of low-level image features, including global image features and

pixel/patch classification models.
local-features Methods for the extraction of local features. Local features are descriptions of regions of images

(SIFT, ...) selected by detectors (Difference of Gaussian, Harris, ...).
faces Implementation of a flexible face-recognition pipeline, including pluggable detectors, aligners,

feature extractors and recognisers.
machine-learning Algorithms which aid the classification and search of data.
nearest-neighbour . Brute force and KD-Tree implementations of exact and approximate KNN.
clustering Various clustering algorithm implementations for all primitive types including random, random

forest [2], K-Means (Exact, Hierarchical [3] and Approximate [5]), ...
hadoop Extensions to enable interaction with the Apache Hadoop Map-Reduce implementation.
core-hadoop Reusable wrappers to access and create sequence-files and map-reduce jobs.

hardware Various interfaces to hardware devices that we’ve used in projects built using OpenIMAJ.
serial Interface to hardware devices that connect to serial or USB-serial ports.
gps Interface to GPS devices that support the NMEA protocol.
compass Interface to an OceanServer OS5000 digital compass.

web Support for analysing and processing web-pages.
core-web Implementation of a programatic offscreen web browser and utility functions.
analysis Utilities for analysing the content and visual layout of a web-page.

Figure 1: OpenIMAJ Library Modules as of July 2011

whether the specific model implementation is attempting to
fit a homography to a set of point-pair matches or a straight
line to samples in a space. ImageTerrier is equally as modu-
lar, and for example, it is possible to easily drop in different
scoring implementations into the search engine.

The speed of individual algorithms in OpenIMAJ has not
been a major development focus, however some decisions
have been made during implementation to ensure efficiency
(for example making fields public rather than using getters
and setters). In order to give the reader some idea of the
real-world performance of our Java code, we have compared
the time taken to process an image by our SIFT implementa-
tion to Lowe’s keypoint binary. For our test image, it takes
3.47 seconds to extract the features with Lowe’s binary (av-
eraged over 100 tests). If we count the time taken using
our implementation and include the time taken to start the
JVM, then we get times of around 10 seconds. However, if
we discount the time to start the JVM, the averaged time
over 100 iterations is just 3.94 seconds, which is agreeably
close to the native version. See the OpenIMAJ wiki for a

demo showing near-realtime SIFT extraction and matching
in pure Java using OpenIMAJ5. Whilst the actual algorithm
speed has not been a particular design focus, scalability of
the algorithms to massive datasets has. Using the OpenI-
MAJ Hadoop tools on our small three-machine Hadoop clus-
ter, we have extracted visual term features from datasets
with sizes in excess of 10 million images. The OpenIMAJ
clustering implementations are able to cluster larger-than-
memory datasets by reading data from disk as necessary.

ImageTerrier is designed to be fast during searching and
memory-efficient during indexing. The fundamental limit on
ImageTerrier is the rate at which the inverted index can be
accessed from disk. ImageTerrier uses heavy index compres-
sion to make the index smaller and thus faster to access.
Experiments have shown that an ImageTerrier index of 1
million medium resolution images indexed with difference-
of-Gaussian SIFT visual terms (with a one million term vo-
cabulary) can be searched in under 400 milliseconds on a
regular PC (i.e. Intel Core 2, 4GB ram, 7200 RPM disk).

5http://bit.ly/OIMJVSIF

3. OPENIMAJ
The OpenIMAJ library is structured into a number of

modules. The modules can be used independently, so if for
instance you were developing data clustering software using
OpenIMAJ you wouldn’t need the modules related to im-
ages. Figure 1 describes the modules and summarises the
functionality in each component.

3.1 Tools
OpenIMAJ exposes key functionality through a set of a

command-line tools. This allows more casual users to test
the abilities of the library more easily as well as allowing use
of OpenIMAJ in non-java projects. The main tools currently
provided are outlined below.

GlobalFeatureTool. Allows extraction of low-level global
features from images. For example: colourfulness, sharp-
ness, number of faces and average brightness. Also allows
comparison of extracted features.

LocalFeatureTool. Allows extraction of local features
using internal implementations of various detectors and de-
scriptors.

ClusterQuantiserTool. Provides methods for both cre-
ation and usage of clusters. Various kinds of clusters can be
trained on various data sources and data sources can also
be quantised using clusters. Currently random, random for-
est, RAC and KMeans (exact, approximate and hierarchi-
cal) clusters are supported. This tool can be used to create
visual-term representations of images through SIFT features
extracted with the LocalFeatureTool.

FlickrCrawler. A set of tools for the targeted download-
ing of images from Flickr in order to create experimental
datasets.

3.2 Hadoop
OpenIMAJ was written with scalability in mind. Using

the Hadoop framework a series of tools were written which
implemented existing OpenIMAJ functionality as map-reduce
tasks. This allows for scalability to large datasets limited
only by the size of the Hadoop cluster. Together these tools
form a tool chain which allows for the end to end construc-
tion of efficiently searchable indexes from images in a scal-
able way.

SequenceFileTool. Allows the easy creation, examina-
tion and extraction of Hadoop sequence-files. Sequence-files
are a form of archive file containing many smaller files, used
by the Hadoop framework. The tool may be used to con-
struct a sequence-file containing a large number of images
as a precursor step to extracting image features.

HadoopClusterQuantiserTool. Multithreaded map-
reduce implementation of vector quantisation. Given an
existing quantiser definition (usually created by the Clus-
terQuantiserTool), compute nodes read the quantiser into
RAM and quantise data points in parallel.

HadoopFastKMeans. Iterative map-reduce implemen-
tation of the exact and approximate K-Means algorithms.

HadoopGlobalFeaturesTool and HadoopLocalFea-
turesTool. Distributed feature extraction from large vol-
umes of images.

HadoopImageDownload. Given a file containing a large
number of URLs, download a the images in parallel. Used
to download all the images from image-net for example.

SequenceFileIndexer. Construct ImageTerrier indexes
using sequence-files as the source.

4. IMAGETERRIER
ImageTerrier is a platform for building efficient inverted

indexes of visual-term information extracted from images.
ImageTerrier is an extension of the Terrier text search plat-
form [4]. ImageTerrier is capable of building compressed
augmented inverted indexes using the highly efficient, state
of the art, single-pass indexing technique. The index format
supports term payloads which allows the optional specifica-
tion of a given visual term’s geometric information, such as a
SIFT visual term’s position, orientation and scale. The pay-
load information is easily accessed when the index is being
searched. ImageTerrier contains implementations of a num-
ber of geometric consistency algorithms that make use of this
information in order to improve search precision. ImageTer-
rier is easily extended and it is possible to have complete
control over both the payloads that get placed in the index
and the operations involved in retrieval from the index.

4.1 Tools
ImageTerrier currently has two complete tools which wrap

the entire process of building and querying an image database:
BasicIndexer. Generation of searchable inverted indexes

from a directory of images. Allows specification of feature
extraction, codebook generation and index options. The
image-specific operations use the OpenIMAJ library.

BasicSearcher. Allows both one off and interactive query-
ing of an index using images. Allows for the specification of
searching scheme and consistency measures.

5. USAGE EXAMPLES
The tools implemented in OpenIMAJ and ImageTerrier

and their applications are many; the reader is encouraged to
experiment with the codebase and follow some of the many
demos available on the websites6. In this section we attempt
to give a taste of the capabilities of the two projects by
showing two self contained examples, demonstrating some
of the capabilities.

5.1 Example 1: Detecting interest points in an
image

For OpenIMAJ we present a code example using the JVM
language Groovy. Using Groovy’s dynamic remote library
loading technology, these demos can be directly copied into
the groovyConsole and run without the need for OpenIMAJ
installation. In Figure 2 we show an example of the capabil-
ities of the OpenIMAJ library. In the example an image is
loaded and converted to greyscale. At this point a few of the
available interest point detectors are initiated and used to
detect interest points in the greyscale version of the loaded
image. Once detected, the interest points are drawn on the
original colour image using the drawing functionality and
finally the detected interest points are displayed.

5.2 Example 2: Building and searching an Im-
ageTerrier Index

The ImageTerrier project comes with tools which use Open-
IMAJ to allow the generation of a searchable index of image
content from a directory of images. This includes extraction
of image features, generation of a visual codebook, quantisa-
tion of image features and construction of an ImageTerrier
index. Each of these stages supports a plethora of options,
6http://openimaj.org and http://imageterrier.org

@ G r a b R e s o l v e r (n a m e= ' octopussy−r e l e a s e s ' , r o o t= ' http :// octopussy . ec s . soton . ac . uk/m2/ r e l e a s e s / ')
@ G r a b (' org . openimaj : core−image : 1 . 0 ')
@ G r a b (' org . openimaj : image−l o ca l−f e a t u re s : 1 . 0 ')
import o r g . o p e n i m a j . i o .∗
import o r g . o p e n i m a j . i m a g e .∗
import o r g . o p e n i m a j . i m a g e . c o l o u r .∗
import o r g . o p e n i m a j . m a t h . g e o m e t r y . s h a p e .∗
import o r g . o p e n i m a j . i m a g e . f e a t u r e . l o c a l . i n t e r e s t .∗

i m g = I m a g e U t i l i t i e s . r e a d M B F (g e t C l a s s () . g e t R e s o u r c e (”/ org/openimaj /OpenIMAJ . png”)) //Load an image
g i m g = T r a n s f o r m s . c a l c u l a t e I n t e n s i t y N T S C (i m g) //make a grey ve r s i on
f l o a t i n t S c a l e = 2.5 f ; f l o a t d i f f S c a l e = 0.6 f ∗ i n t S c a l e ; // se t the s c a l e s (std . dev of Gaussian)
f l o a t i n t S c a l e V a r = i n t S c a l e ∗∗2 ; f l o a t d i f f S c a l e V a r = d i f f S c a l e ∗∗2 ; // c a l c u l a t e the var iance
i p d s = [// s e t up a l i s t o f d e t e c to r s

[i p d : new H a r r i s I P D (d i f f S c a l e V a r , i n t S c a l e V a r) , c o l o u r : R G B C o l o u r . R E D] ,
[i p d : new H e s s i a n I P D (d i f f S c a l e V a r , i n t S c a l e V a r) , c o l o u r : R G B C o l o u r . M A G E N T A] ,
[i p d : new L a p l a c e I P D (d i f f S c a l e V a r , i n t S c a l e V a r) , c o l o u r : R G B C o l o u r . G R E E N] ,

]
i p d s . e a c h { r e c −> // loop through de t e c t o r s and draw 100 bes t po in t s found

r e c . i p d . f i n d I n t e r e s t P o i n t s (g i m g)
i m g . d r a w P o i n t s (r e c . i p d . g e t I n t e r e s t P o i n t s (100) , r e c . c o l o u r , 3)

}
D i s p l a y U t i l i t i e s . d i s p l a y (i m g) // d i sp lay the r e s u l t

Figure 2: Interest point detectors working in OpenIMAJ

$> c a t h i g h f i e l d . c o n f i g
c r a w l e r {

a p i k e y=”<key>” , s e c r e t=”<s e c r et>”
o u t p u t d i r=”h i g h f i e l d ”
q u e r y p a r a m s { w o e I d=”43761 ”}
i m a g e s { t a r g e t S i z e =[” l a rg e ” , ” o r i g i n a l ” , ”medium”]}

}
$> g r o o v y F l i c k r C r a w l e r . g r o o v y h i g h f i e l d . c o n f i g
$> B a s i c I n d e x e r −o i d x −q t R A N D O M −k 100000 h i g h f i e l d
$> B a s i c S e a r c h e r −i i d x −q q u e r y . j p g −d r

Figure 3: Example settings for the FlickrCrawler
tool, highfield.config and the tools useage

here we present a basic example. Firstly, an image collec-
tion can be downloaded using the provided FlickrCrawler
tool in OpenIMAJ. This tool is called using the command
in Figure 3 which references a configuration file also shown
in Figure 3. This configuration file supports various features
including the specification of a Flickr query against which
images are downloaded7. In this case we download images
geo-tagged with coordinates with a specific Flickr Where On
Earth ID (woe id), which in the example is the id for High-
field, the location of the University of Southampton’s main
campus in the United Kingdom.

Once an appropriate directory of images is collected the
indexer tool can be applied. This tool allows specification of:
extracted feature type, generated codebook type and vari-
ous ImageTerrier index options. In the example in Figure 3
we generate the default SIFT features and specify that a
Random codebook of size 100000 be generated using all ex-
tracted features as training samples. Using the codebook,
the features are quantised and used to construct an index.
The image set is now searchable.

Once the index and codebook are generated the directory
of images is now searchable. The BasicSearcher tool can
be used to search indexes with images. The tool provides
a useful command line interface for multiple queries, but in
the example shown in Figure 3 a single query image is used.
Elaborations and example query results using these tools
can be found on the ImageTerrier Wiki8

7http://bit.ly/OIMJFCR
8http://bit.ly/ITEREXMP

6. APPLICATIONS IN EDUCATION
The codebase that makes up the core of OpenIMAJ has

been used by undergraduate student projects in Southamp-
ton for around the last 5 years. Students have used the
library in a range of projects, from performing road-sign
recognition using local features through to experimenting
with K-nearest-neighbour classification of city/landscape scenes
using KD-Tree data-structures with large image collections
crawled from Flickr. With the software now open-sourced,
we expect that our future students will help contribute to
the codebase in the coming years.

7. ACKNOWLEDGMENTS
Current development of the OpenIMAJ and ImageTerrier

software is funded by the European Union Seventh Frame-
work Programme (FP7/2007-2013) under grant agreement
n◦ 270239 (ARCOMEM) and 231126 (LivingKnowledge) to-
gether with the LiveMemories project, graciously funded
by the Autonomous Province of Trento (Italy). We are
also grateful to the Arts and Humanities Research Council
(‘Bridging the Semantic Gap’ - MRG-AN6770/APN17429)
and Ordnance Survey, for earlier funding under which a
number of the older OpenIMAJ classes were created.

References
[1] D. Lowe. Distinctive image features from scale-invariant

keypoints. IJCV, 60(2):91–110, January 2004.

[2] F. Moosmann, E. Nowak, and F. Jurie. Randomized
clustering forests for image classification. IEEE PAMI,
2008.

[3] D. Nistér and H. Stewénius. Scalable recognition with a
vocabulary tree. In CVPR, pages 2161–2168, 2006.

[4] I. Ounis, G. Amati, V. Plachouras, B. He, C. Macdonald,
and C. Lioma. Terrier: A High Performance and Scalable
Information Retrieval Platform. In Proc SIGIR, 2006.

[5] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisser-
man. Object retrieval with large vocabularies and fast
spatial matching. In CVPR, 2007.

